物竞编号 01NX
分子式 C4H8O
分子量 72.11
标签 甲乙酮, 甲基丙酮, 甲基乙基酮, 乙基甲基甲酮, 丁酮, Methyl ethyl ketone, Methyl acetone, Ethyl methyl ketone, 2-Ketobutane

编号系统

CAS号:78-93-3

MDL号:MFCD00011648

EINECS号:201-159-0

RTECS号:EL6475000

BRN号:741880

PubChem号:24872423

物性数据

1.性状:无色液体,有似丙酮的气味。[1]

2.熔点(℃):-85.9[2]

3.沸点(℃):79.6[3]

4.相对密度(水=1):0.81[4]

5.相对蒸气密度(空气=1):2.42[5]

6.饱和蒸气压(kPa):10.5(20℃)[6]

7.燃烧热(kJ/mol):-2261.7[7]

8.临界温度(℃):262.5[8]

9.临界压力(MPa):4.15[9]

10.辛醇/水分配系数:0.29[10]

11.闪点(℃):-9(CC)[11]

12.引燃温度(℃):404[12]

13.爆炸上限(%):11.5[13]

14.爆炸下限(%):1.8[14]

15.溶解性:溶于水、乙醇、乙醚、丙酮、苯,可混溶于油类。[15]

16.相对密度(g/mL,20/4ºC):0.8049

17.相对密度(g/mL,25/4ºC):0.7997

18.折射率(n20ºC):1.3788

19.折射率(n25ºC):1.3764

20.黏度(mPa·s,25ºC):0.423

21.黏度(mPa·s,30ºC):0.365

22.闪点(ºC,闭口):-7.2

23.闪点(ºC,开口):1.67

24.燃点(ºC):516

25.蒸发热(J/mol,b.p.):23.3

26.熔化热(KJ/mol):8.4

27.生成热(KJ/mol):279.2

28.比热容(KJ/(kg·K),定压):2.297

29.电导率(S/m):3.6×10-9

30.体膨胀系数(K-1,0~80ºC):0.00142

31.体膨胀系数(K-1,0~30ºC):0.00129

32.临界密度(g/mL):0.270

33.临界体积(cm3·mol-1):267

34.临界压缩因子:0.252

35.偏心因子:0.324

36.Lennard-Jones参数(A):14.49

37.Lennard-Jones参数(K):145.9

38.溶度参数(J·cm-3)0.5:18.796

39.van der Waals面积(cm2·mol-1):7.910×109

40.van der Waals体积(cm3·mol-1):49.270

41.气相标准燃烧热(焓)(kJ·mol-1):-2478.6

42.气相标准声称热(焓)( kJ·mol-1) :-238.7

43.气相标准熵(J·mol-1·K-1) :339.47

44.气相标准生成自由能( kJ·mol-1):-146.6

45.气相标准热熔(J·mol-1·K-1):103.26

46.液相标准燃烧热(焓)(kJ·mol-1):-2444.1

47.液相标准声称热(焓)( kJ·mol-1):-273.3

48.液相标准熵(J·mol-1·K-1) :239.0

49.液相标准生成自由能( kJ·mol-1):-151.4

50.液相标准热熔(J·mol-1·K-1):158.9

毒理学数据

1.急性毒性[16]

LD50:2737mg/kg(大鼠经口);6480mg/kg(兔经皮)

LC50:23500mg/m3(大鼠吸入,8h)

2.刺激性[17]

家兔经皮:13780μg(24h),轻度刺激(开放性刺激试验)

家兔经眼:80mg,引起刺激。

3.亚急性与慢性毒性[18]  大鼠暴露于5000ppm,每天6h,每周5d,共90d。引起雄性大鼠肝重增加,脑和脾重量下降,血液生化指标轻度变化;雄性大鼠仅轻度肝重增加。

4.致突变性[19]  性染色体缺失和不分离:酿酒酵母菌33800ppm。

5.致畸性[20]  大鼠孕后6~15d吸入最低中毒剂量(TCLo)3000ppm/7h,致颅面部(包括鼻、舌)、泌尿生殖系统发育畸形。大鼠孕后6~10d吸入最低中毒剂量(TCLo)2900mg/m3,致颅面部(包括鼻、舌)、肌肉骨骼系统、胃肠道发育畸形。

6.其他[21]  大鼠吸入最低中毒浓度(TCLo):3000ppm(7h)(孕6~15d),致颅面部(包括鼻、舌)发育异常,致泌尿生殖系统发育异常,致凝血异常。

TCLo:100ppm(人吸入,5min)

生态学数据

1.生态毒性[22]

LC50:1690~5640mg/L(96h)(蓝鳃太阳鱼);3200mg/L(96h)(黑头呆鱼,pH值7.5);1950mg/L(24h)(卤虫);<520mg/L(48h)(水蚤,pH值8);918~3349mg/L(48h)(水蚤,pH值7.21)

IC50:110~4300mg/L(72h)(藻类)

2.生物降解性[23]

好氧生物降解(h):24~168

厌氧生物降解(h):96~672

3.非生物降解性[24]

水中光氧化半衰期(h):1.80×104~7.10×105

空气中光氧化半衰期(h):64.2~642

一级水解半衰期(h):>50a

分子结构数据

1、摩尔折射率:20.60

2、摩尔体积(cm3/mol):91.6

3、等张比容(90.2K):196.3

4、表面张力(dyne/cm):21.0

5、极化率(10-24cm3):8.17

计算化学数据

1.疏水参数计算参考值(XlogP):无

2.氢键供体数量:0

3.氢键受体数量:1

4.可旋转化学键数量:1

5.互变异构体数量:3

6.拓扑分子极性表面积17.1

7.重原子数量:5

8.表面电荷:0

9.复杂度:38.9

10.同位素原子数量:0

11.确定原子立构中心数量:0

12.不确定原子立构中心数量:0

13.确定化学键立构中心数量:0

14.不确定化学键立构中心数量:0

15.共价键单元数量:1

性质与稳定性

1.化学性质:丁酮由于具有羰基及与羰基相邻接的活泼氢,因此容易发生各种反应。与盐酸或氢氧化钠一起加热发生缩合,生成3,4-二甲基-3-己烯-2-酮或3-甲基-3-庚烯-5-酮。长时间受日光照射时,生成乙烷、乙酸、缩合产物等。用硝酸氧化时生成联乙酰。用铬酸等强氧化剂氧化时生成乙酸。丁酮对热比较稳定,500℃以上热裂生成烯酮或甲基烯酮。与脂肪族或芳香族醛发生缩合时,生成高分子量的酮、环状化合物、缩酮以及树脂等。例如与甲醛在氢氧化钠存在下缩合,首先生成2-甲基-1-丁醇-3-酮,接着脱水生成甲基异丙烯基酮。该化合物受日光或紫外光照射时发生树脂化。与苯酚缩合生成2,2-双(4-羟基苯基)丁烷。与脂肪族酯在碱性催化剂存在下反应,生成β-二酮。在酸性催化剂存在下与酸酐作用发生酰化反应,生成β-二酮。与氰化氢反应生成氰醇。与氨反应生成酮基哌啶衍生物。丁酮的α-氢原子容易被卤素取代生成各种卤代酮,例如与氯作用生成3-氯-2-丁酮。与2,4-二硝基苯肼作用生成黄色的2,4-二硝基苯腙(m.p. 115℃)。

2.稳定性[25]  稳定

3.禁配物[26]  强氧化剂、碱类、强还原剂

4.聚合危害[27]  不聚合

贮存方法

储存注意事项[28] 储存于阴凉、通风的库房。远离火种、热源。库温不宜超过37℃。保持容器密封。应与氧化剂、还原剂、碱类分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有泄漏应急处理设备和合适的收容材料。

合成方法

有气相和液相脱氢两种方法。
(1)气相脱氢用锌铜合金或氧化锌作催化剂,温度400~500℃,常压;液相脱氢用兰尼镍或亚铬酸铜作催化剂,温度150℃。液相脱氢反应温度及能耗较低,产率较高,催化剂寿命长,分离工艺简单。
(2)丁烷液相氧化法
丁烷液相氧化的主产品是乙酸,同时副产丁酮(约占乙酸产量的16%)。反应温度150~225℃,压力4.0~8.0MPa。例如美国联合碳化物公司,1976年用此法生产了22.6万吨乙酸,得到3.6万吨的副产丁酮。目前在美国约20%的丁酮是用此法生产的。
目前正在研究、发展的方法有丁烯液相氧化法、异丁苯法等。
(3)丁烯液相氧化法
此法称为互克尔法(Wacker法)。以氯化钯/氯化铜溶液为催化剂,在90~120℃、1.0~2.0MPa条件下进行反应。

丁烯转化率约95%,丁酮收率约88%,得到的反应液通过蒸馏等方法提纯而得到成品。此法工艺过程简单,但设备腐蚀严重,需用重金属作催化剂。此法尚未应用于大规模生产。
(4)异丁苯法
正丁烯和苯经烃化生成异丁苯,异丁苯氧化生成过氧化氢异丁苯,最后用酸分解得到丁酮和苯酚。
苯烃化以三氯化铝为催化剂,反应温度50~70℃,得异丁基苯;

异丁基苯于110~130℃、0.1~0.49MPa压力下,液相氧化生成异丁基苯过氧化氢;

然后在酸催化剂存在下分解,于20~60℃提浓氧化液,生成丁酮和苯酚,最后分离精制而得成品。


此法特点是工艺设备腐蚀较轻,反应条件温和,有利于工业化。丁酮是干馏木材的蒸出液(木醇油)的重要组分。工业上从仲丁醇、丁烷等制取。

1.硫酸间接水合法 含丁醇的混合C4馏分与硫酸接触生成酸式硫酸酯和中式硫酸酯,然后用水稀释,水解生成仲丁醇水溶液,再经脱水、提浓得仲丁醇。纯仲丁醇经镍或氧化锌催化脱氢后,得成品。

2.正丁烯直接水合法 此法分两种,一种以树脂为催化剂,另一种以杂多酸为催化剂。

3.仲丁醇脱氢法 此工艺分气相法与液相法,大部分采用气相法脱氢工艺。即仲丁醇在脱氢催化剂作用下经脱氢制得丁酮。

4.乙烯气相氧化法。

5.异丁苯法 正丁烯和苯经烃化生成异丁苯,异丁苯氧化生成过氧化氢异丁苯,最后用酸分解得到丁酮和苯酚。此法特点是:工艺设备腐蚀较轻,反应条件温和,有利于工业化。

6.含丁醇的混合C4馏分与硫酸反应,然后用水稀释,水解生成仲丁醇水溶液,再经脱水、提纯得仲丁醇。纯仲丁醇经镍或氧化锌催化脱氢后,得成品。或者利用正丁烯直接水合法。

7.以工业品丁酮为原料,加入少量无水碳酸钠,搅动,加热回流,过滤后蒸馏。选择不同塔板的精馏塔和回流比,可得到不同含量的纯品丁酮。

8.主要采用酯化法。以含丁烯的混合C 4 馏分为原料,与硫酸进行酯化反应,生成酸性硫酸酯和中性硫酸酯,然后用水稀释,水解生成仲丁醇水溶液,再经脱水、提浓得仲丁醇,最后经催化脱氧后,得成品反应如下:

C 4H8+H2S O 4→ 4C 3H9HS O 4→ OC 3H9OH+H2S O 4
C 4H9OH -H2→ CH3C O C 2H5

用途

1.丁酮主要用作溶剂,如用于润滑油脱蜡、涂料工业及多种树脂溶剂、植物油的萃取过程及精制过程的共沸精馏,其优点是溶解性强,挥发性比丙酮低,属中沸点酮类溶剂。

2.丁酮还是制备医药、染料、洗涤剂、香料、抗氧化剂以及某些催化剂的是中间体,合成抗脱皮剂甲基乙基酮肟、聚合催化剂甲基乙基酮过氧化物、阻蚀剂甲基戊炔醇等,在电子工业中用作集成电路光刻后的显影剂。

3.用作洗涤剂、润滑油脱蜡剂、硫化促进剂和反应中间体等。

4.用于有机合成。用作色谱分析标准物质、溶剂。

5.用于电子工业,常用作清洗去油剂。

6.除了广泛用于炼油、涂料、助剂、胶黏剂、染料、医药及电子元件清洗等方面外,主要用于硝酸纤维素、乙烯基树脂、丙烯酸树脂和其他合成树脂的溶剂。其优点是溶解性强,挥发性比丙酮低。在植物油的萃取、精制过程的共沸精馏以及制备香料、抗氧化剂等方面也有应用。

7.是有机合成原料,可作溶剂。在炼油工业中作润滑油的脱蜡剂,同时用于医药、涂料、染料、洗涤剂、香料和电子等工业。液体油墨的溶剂。化妆品中用于指甲油的制造,作为低沸点溶剂,能降低指甲油的黏度,有快干性。

8.用作溶剂、脱蜡剂,也用于有机合成,及作为合成香料和医药的原料。[29]

安全信息

危险运输编码:UN 1193 3/PG 2

危险品标志:易燃 有毒 刺激

安全标识:S9 S12 S16 S25 S33 S45

危险标识:R11 R36 R37 R66 R67 R23/24/25 R39/23/24/25

文献

[1~29]参考书:危险化学品安全技术全书.第一卷/张海峰主编.—2版.北京;化学工业出版社,2007.6 ISBN 978-7-122-00165-8

备注

暂无

表征图谱